RP105 Protects Against Apoptosis in Ischemia/Reperfusion-Induced Myocardial Damage in Rats by Suppressing TLR4-Mediated Signaling Pathways.
نویسندگان
چکیده
BACKGROUND Myocardial apoptosis is heavily implicated in the myocardial damage caused by ischemia-reperfusion (I/R). Toll-like receptor 4 (TLR4) is a potent inducer of these apoptotic cascades. In contrast, the radioprotective 105 kDa protein (RP105) is a specific negative regulator of TLR4 signaling pathways. However, the precise mechanisms by which RP105 inhibits myocardium apoptosis via TLR4-associated pathways during I/R is not fully understood. METHODS We utilized a rat model of myocardial ischemic reperfusion injury (MIRI). Animals were pre-treated with Ad-EGFP adenovirus, Ad-EGFP-RP105 adenovirus, saline, or nothing (sham). After three days, rats underwent a 30min left anterior descending coronary artery occlusion and a 4h reperfusion. Mycardial tissue was assessed by immunohistochemistry, TUNEL-staining, Western blot, quantitative RT-PCR, and a morphometric assay. RESULTS RP105 overexpression resulted in a reduction in infarct size, fewer TUNEL-positive cardiomyocytes, and a reduction in mitochondrial-associated apoptosis cascade activity. Further, RP105 overexpression repressed I/R-induced myocardial injury by attenuating myocardial apoptosis. This was mediated by inhibiting TLR4 activation and the phosphorylation of P38MAPK and the downstream transcription factor AP-1. CONCLUSION RP105 overexpression leads to the de-activation of TLR4, P38MAPK, and AP-1 signaling pathways, and subsequently represses apoptotic cascades and ensuing damage of myocardial ischemic reperfusion. These findings may become the basis of a novel therapeutic approach for reducing of cardiac damage caused by MIRI.
منابع مشابه
Radioprotective 105 kDa protein attenuates ischemia/reperfusion-induced myocardial apoptosis and autophagy by inhibiting the activation of the TLR4/NF-κB signaling pathway in rats.
Toll-like receptor 4 (TLR4) serves as an important inducer of apoptotic and autophagic responses in myocardial ischemia/reperfusion (I/R) injury (MIRI). Radioprotective 105 kDa protein (RP105) is a specific inhibitor of TLR4. However, the molecular mechanisms by which RP105 represses myocardial apoptosis and autophagy through TLR4‑mediated signaling during I/R have not yet been fully elucidated...
متن کاملInhibiting miR-155 protects against myocardial ischemia/reperfusion injury via targeted regulation of HIF-1α in rats
Objective(s): The aim of this study was to identify the role of miR-155 in the myocardial ischemia/reperfusion (I/R) injury through targeting hypoxia-inducible factor 1-alpha (HIF-1α). Materials and Methods: We constructed rat models with myocardial I/R injury and H9C2 cell models with hypoxia/reoxygenation (H/R) damage. Anti-miR-155 and...
متن کاملDexmedetomidine Protects Cardiomyocytes against Hypoxia/Reoxygenation Injury by Suppressing TLR4-MyD88-NF-κB Signaling
Objective We previously reported that dexmedetomidine (DEX) offers cardioprotection against ischemia/reperfusion injury in rats. Here, we evaluated the role of toll-like receptors 4- (TLR4-) myeloid differentiation primary response 88- (MyD88-) nuclear factor-kappa B (NF-κB) signaling in DEX-mediated protection of cardiomyocytes using in vitro models of hypoxia/reoxygenation (H/R). Methods Th...
متن کاملDexmedetomidine Protects Rat Liver against Ischemia-Reperfusion Injury Partly by the α2A-Adrenoceptor Subtype and the Mechanism Is Associated with the TLR4/NF-κB Pathway
Toll-like receptor 4 (TLR4)/nuclear factor kappa B (NF-κB) signaling plays a dominant role in the pathogenesis of liver ischemia-reperfusion (IR) injury. Dexmedetomidine (Dex) protects the liver against IR injury via α₂-adrenoceptor activation, but the contribution of TLR4 signaling remains unknown. The authors aimed to examine whether pretreatment with Dex produces hepatic protection and inves...
متن کاملPreconditioning effects of oxytocin in reducing cardiac arrhythmias in a rat heart regional ischemia-reperfusion model
Abstract Introduction: Occurrence of cardiac arrhythmias and myocardial infarction are two main deleterious events that are caused by ischemia-reperfusion (IR) injury in the heart. Cardiac preconditioning represents the most potent method of rescuing heart tissue from undergoing irreversible ischemic damage. The aim of the present study was to evaluate oxytocin (OT) cardioprotective effect...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology
دوره 36 6 شماره
صفحات -
تاریخ انتشار 2015